
NASA TECHNICAL NOTE

IpBm,

f,_

I

Z
I--

.¢¢

.=¢
Z

NASA TN D-7713

;!)i. !_)>,, ,

NUMERICAL METHODS FOR

THE DESIGN AND ANALYSIS

OF WINGS AT SUPERSONIC SPEEDS

by Harry IV. Carlson and David S. Miller

Langley Research Center

Hampton, Va. 23665
7_'z6 .1_1_

NATIONAL AERONAUTICSAND SPACE ADMINISTRATION • WASHINGTON, D C • DECEMBER1974



1. Report No. 2. Government Accession No.

NASA TN D-7713

4. Title and Subtitle

NUMERICAL METHODS FOR THE DESIGN AND ANALYSIS

OF WINGS AT SUPERSONIC SPEEDS

7. Author(s)

Harry W. Carlson and David S. Miller

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, Va. 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

December 1974

6. Performing Organization Code

8. Performing Organization Report No.

L-9542

10. Work Unit No.

760-65-11-02

'11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Note

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

In rather extensive employment of numerical methods for the design .and analysis of

arbitrary-planform wings at supersonic speeds, certain deficiencies have been revealed,

particularly in application to wings with slightly subsonic leading edges. Recently devised

numerical techniques which overcome the major part of these deficiencies have now been

incorporated into the methods. In order to provide a self-contained description of the

revised methods, the original development as well as the more recent revisions have been

subjected to a thorough review in this report.

17. Key Words (Suggested by Author(s))

Supersonic wing analysis

Supersonic wing design

Wing twist and camber

Drag minimization

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

74

STAR Category 01

22. Price*

$4.25

For sale by the National Technical Information Service, Springfield, Virginia 22151



NUMERICAL METHODS FOR THE DESIGN AND ANALYSIS

OF WINGS AT SUPERSONIC SPEEDS

By Harry W. Carlson and David S. Miller

Langley Research Center

SUMMARY

In rather extensive employment of numerical methods for the design and analysis

of arbitrary-planform wings at supersonic speeds, certain deficiencies have been

revealed, particularly in application to wings with slightly subsonic leading edges.

Recently devised numerical techniques which overcome the major part of these deficien-

cies have now been incorporated into the methods. In order to provide a self-contained

description of the revised methods, the original development as well as the more recent

revisions have been subjected to a thorough review in this report.

Revisions to the wing-design method have virtually eliminated irregularities that

often arose in the definition of the camber surface in the immediate vicinity of the wing

leading edge. An aft-element sensing technique has been incorporated in the analysis

method to suppress pressure oscillations which formerly required application of a power-

ful nine-point smoothing formula. These improvements, in combination with more com-

patible summation methods in the design and analysis mode, have reduced small but

disturbing discrepancies which sometimes arose between wing loadings and forces deter-

mined for an optimized wing and loadings and forces calculated for that same shape upon

submittal to the evaluation program.

INTRODUCTION

Because of its simplicity and versatility, linearized theory has been employed

rather extensively in the design and analysis of supersonic aircraft. Descriptions of

design and analysis methods based on linearized theory and examples of results obtained

in application to typical problems are given in references 1 to 4.

One important application of linearized-theory methods is in the design of wing

lifting surfaces for drag minimization and in the analysis of pressure loadings and over-

all forces on wings of specified shape. Although exact linearized-theory solutions are

available for certain problems, for example, definition of minimum-drag surfaces for

delta or arrow planforms and evaluation of loadings and forces on flat-plate wings of sim-

ple planform, these solutions are not directly applicable to the complex wing planforms



and surface shapes often employed in real aircraft. Such limitations, however, have been
removed by the introduction of numerical methods for implementation of linearized theory
on high-speed digital computers.

Widely used computer-implemented numerical methods for the design and analysis
of wings with arbitrary planform which employ a rectangular grid system for representa-
tion of the wing lifting surface and simplified numerical techniques for evaluation of
linearized-theory integrals are presented in references 5, 6, and 7. These methods can
accommodate large numbers of wing elements (in the thousands) for the description of
rather complex planforms and the handling of intricate surface shapes. Reference 5
described a method for the design of wing camber surfaces to minimize drag at a given
lift coefficient through employment of an optimum combination of component loadings.
This was followed by a method (ref. 6) which employed the same basic formulations for
the evaluation of lifting pressures on flat-plate wings. The evaluation method was later
extended to cover the case of wings with arbitrary-surface shape as described in
reference 7.

Although the wing-design and analysis methods have for the most part been used
quite successfully for a number of years, certain deficiencies are knownto exist. Most
notable is the tendency for solutions to be PoOrly behaved for wings whose leading edges
are only slightly subsonic. Recently, means of overcoming the major part of these
deficiencies have been devised and the results of the study are presented herein. In order
to provide a self-contained description of the revised methods, the original development
as well as the more recent revisions have been subjected to a thorough review.

In the design of wings with slightly subsonic leading edges, sporadic irregularities
were found in the definition of the camber surface in the immediate vicinity of the leading
edge. These irregularities could be removed by a manual alteration, but in fact were
more often ignored. A numerical procedure (programable for use on high-speed digital
computers) which approximates the strategy employed in manual elimination of irregular-
ities has recently been devised and is now incorporated in the design method.

For the analysis method, especially in application to flat wings with near-sonic
leading edges, large oscillations in local pressure coefficients were known to exist from
the inception of the method. In the original method these oscillations were largely
eliminated by introduction of a powerful nine-point smoothing formula which operated
after an initial definition of unsmoothed pressure coefficients for all the wing elements.
The smoothing operation necessitated an extension of the wing grid system for four ele-
ments behind the actual wing trailing edge, and thus it effectively limited application of
the method to wings with supersonic trailing edges. For the particular case of a flat wing
with an exact sonic leading edge the oscillations became so severe that the only recourse
was to avoid that condition by considering either a slightly subsonic or slightly supersonic
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leading edge. An aft-element sensing technique which will be described has now been
incorporated in the program to permit an integral smoothing and thus eliminate the
necessity for a separate terminal smoothing routine. This provision also extends
applicability of the method to wings with subsonic trailing edges.

There has also been a small but disturbing discrepancy between wing loadings and
forces determined for an optimized wing shape in the design mode and the loadings and
forces calculated for that same shape in the analysis mode. A part of that discrepancy is
resolved by employment of the previously discussed modifications. Other means of pro-
viding more accurate results in both modes so as to insure the proper correspondence are
to be discussed.

SYMBOLS

: A(L,N) leading-edge-element weighting factor for influence summations

A(L*,N*) leading-edge-element weighting factor for force and moment summations

Ao

1

B(L,N)

load strength factor for ith loading

trailing-edge-element weighting factor for influence summations

B(L*,N*) trailing-edge-element weighting factor for force and moment summations

b wing span

C(L,N) wing center-line element or wing-tip-element weighting factor for influence

summations

C(L*,N*) wing center-line element or wing-tip-element weighting factor for force and

moment summations

C D

CD,ij

C L

CL,d

drag coefficient

interference-drag coefficient between ith and jth specified loadings (eq. (25))

lift coefficient

design lift coefficient
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C m

ACp

C

pitching-moment coefficient

lifting-pressure coefficient

local wing chord

mean aerodynamic chord

c d

c I

a m

L,N

section drag coefficient (eq. (16))

section lift coefficient (eq. (15))

section pitching-moment coefficient (eq. (17))

designation of influencing elements

L*,N* designation of field-point elements

wing overall length

M Mach number

R influence function (eq. (3))

average value of influence function within a grid element (eqs. (6), (7), and (8))

x,y,z

reference wing area

distances measured in a Cartesian coordinate system (see fig. 1)

X T

X a

Z c

ZC_S

distance from wing leading edge measured in x-direction

longitudinal distance from leading edge of specified area loading (see fig. 8)

camber-surface z-ordinate

smoothed camber-surface z-ordinate



zr

M M-2_I

A

kL,km,_t z

T

Subscripts:

a,b

ac

C,F,T

i,j

le

max

min

n

te

camber-surface z-ordinate at wing-root trailing edge

angle of attack, deg

wing leading-edge sweepback angle, deg

Lagrange multipliers for lift, moment, and camber-surface ordinates,

respectively

dummy variables of integration for x and y, respectively

designation of a region of integration bound by the wing planform and the fore

Mach cone from the point (x,y)

step indices

aerodynamic center

aerodynamic coefficients for the cambered wing, the corresponding flat wing,

and the totaled combination of cambered and flat wing, respectively

ith and jth specified loading

leading edge

maximum

minimum

number of specified loadings

trailing edge
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NUMERICAL-CALCULATION METHODS

Camber Surface for a Given Loading

A typical wing planform described by a rectangular Cartesian coordinate system is
illustrated in figure 1. For a wing of zero thickness lying essentially in the z = 0 plane,

linearized theory for supersonic flow defines the wing-surface slopes necessary to support

a specified lift distribution by the equation

az (x - _) ACp(_,_/) d_/d_ (1)

which is a slightly modified form of equation (77a) of reference 8. The integral represents

the influence of a continuous distribution of horseshoe vortices originating from wing

elements with vanishingly small chords and spans. The region of integration _- extends

over the wing planform within the fore Mach cone from the field point (x,y) as shown by

the shaded area in figure 1. The integral gives the appearance of being improper and

divergent because of the singularity at _/= y within the region of integration. This

integrand is, however, the limiting form in the z = 0 plane of a more general integrand

that arises from lifting-surface theory and does not have a singularity at _/= y when

z / 0. Consequently, the integral can be treated according to the concept of the generaliza-

tion of the Cauchy principal value, which is discussed and explained in section 3 of refer-

ence 9 and also in reference 8. The integral is thus generally found to be convergent at

points (x,y) on a wing surface, although regions of nonconvergence exist if there are val-

ues of y for which the spanwise derivative of the chordwise integral

(x - _) ACp(_,_?)

{(x - _)2 _ fi2(y _ 77)2

is not single valued at _ = y. Such conditions can arise along a streamwise line directly

behind a discontinuity in the wing leading-edge sweep (for example, at the wing apex) and

can occur at spanwise stations for which discontinuities appear in spanwise derivatives of

the loading distribution. These regions of nonconvergence, however, do not invalidate

results over the remainder of the wing surface.

For the purposes of this study, equation (1) will be rewritten in the form

az c
--_-(x,y) = .l_ ACp(X,y)+ 4_ _ R(x-_,y-r/)ACp(_,v/)d/_ d_ (2)
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where the function R is defined as

R(x-_,y-_/) = x- _ (3)

_2(y _ _7)2 _(x - _)2 _ _2(y _ _/)2

and may be thought of as an influence function relating the local loading at point (_,77) to

its influence in determining the necessary slope at downstream point (x,y). A graphical

representation of the influence function R is shown in figure 2. The singularity at

_? = y has been expanded to illustrate its peculiar character. The physical significance

of the function may be better understood when it is applied in the definition of the upwash

field produced by a small elemental lifting surface. If in equation (2) ACp(x,y) is setOz

equal to zero, the resultant slope -_(x,y) will define the local upwash angularity. The

nature of this upwash distribution is illustrated in figure 3. The negative singularity of

the influence function at _? = y makes its presence felt in a strong downwash field

extending downstream from the lifting element. The remainder of the flow field, outboard

of streamwise lines from the element tips, is composed entirely of upwash. The abrupt

change from negative to positive infinities corresponds to the trailing tip vortices. A

positive singularity is noted to exist also at the Mach cone limits,

It is this upwash field, and particularly the large values of upwash near the Mach

cone limits, that makes twisted and cambered arrow wings with subsonic leading edges

attractive from the standpoint of aerodynamic efficiency. Because of the upwash

created by forward elements of the wing, the wing suriace at and near the leading edge

may be shaped so as to create an appreciable amount of lift on a forwardly inclined

surface and produce a local thrust rather: than a drag. The theory predicts that drag

reductions approaching these levels can also be achieved for flat wings if the full benefits

of leading-edge suction can be realized; however, little evidence of any appreciable

amount of leading-edge suction has been seen for supersonic speeds. Unfortunately, this

same upwash field, with the large values of upwash near the Mach cone limits, is also

largely responsible for the difficulties in representing supersonic-flow phenomena by

means of finite-element numerical techniques.

In order to replace the indicated integration in equation (2) by a numerical summa-

tion, it is first necessary to introduce a grid system superimposed over the Cartesian

coordinate system used in describing the wing planform as shown in figure 4. (This

sketch is illustrative only; in application many more grid elements would be employed.)

The numbers assigned to L and N identify the spaces in the grid which replace the

element of integration (d_,dfi_/). The starred values of L and N identify the space or

element associated with and immediately ahead of the field point (x,y); L* is numeri-

cally equal to x and N* is numerically equal to Ely, where x and BY take on only
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integer values. The region of integration, originally boundby the wing leading edge and
the Mach lines, now consists of a set of grid elements approximating that region as shown
by the shadedarea in the example of figure 4. Inclusion of partial as well as full grid
elements provides a better definition of the wing leading edge and tends to reduce any
irregularities that may arise in local surface slopes for elements in the vicinity of the

leading edge.

The contribution of each element of the wing (L,N) to the local slope at (x,/3y) may

be written as

OZ c

-_-(x,y) = _ R(L*-L,N*-N) A(L,N) B(L,N) C(L,N) ACp(L,N)
(4)

Terms in this equation and methods used in their evaluation will be described in some

detail in the following paragraphs.

The R term represents an average value within the element of the function

R(x-_,y-7). The value of this factor may be found from the integral

1 _2 d_ fi72 , (x- _) dfi7

fi(L*-L,N*-N) = A_ Afl_? "J_l Jf_71 _2(y _ 7)2_(x_ _)2 _ f_2(y _ 7)2

(5)

in which the integration extends over one grid element. Since, by numerical evaluation of

the integrand, the R factor has been determined to be relatively insensitive to varia-

tions in _, as an approximation the R factor may be written as

R(L*-L,N*-N) = 1 _9_72 (L* L + 0.5) d2_?

_71 _2(y _ 7)2_(L. _ L + 0.5) 2 - f32(y - 7) 2

(6)

with (L* - L + 0.5) representing the value of x -

integration the expression takes the form

at the midpoint of the element. On

R(L*-L,N*-N) = (L* - L + 0.5) _(L* - L + 0.5) 2 -_2(y _ _?)2

(L* - L + 0.5)2f_(Y - 7)

(7)

and with _y = N*, _71 = N - 0.5, and _72 = N + 0.5 (see fig. 4), the influence factor

becomes
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R(L*-L,N*-N) = ¢(L* - L + 0.5)2 - (N* - N - 0.5)2

(L* - L + 0.5)(N* - N - 0.5)

{(L* - L + 0.5)2 - (N* - N + 0.5)2

(L* - L + 0.5)(N* - N + 0.5)

(8)

A graphical representation of this factor is shown in figure 5. Note the rather small

variations of the factor in the x- or L-direction contrasted with the drastic variations

in the y- or N-direction. For a given L* - L set of elements, the spanwise summation

of the R values is found to be zero, due to the single negative value at N* - N = 0

balancing all the others. This insures that a lifting element, or a complete wing, will

produce a flow field which consists of equal amounts of upwash and downwash and thus

introduces no net vertical displacements of the medium in which it is moving. At

L* - L = 0 where there is only one element in the spanwise summation, the R value of

that element is zero. This fact, which insures that an element will have no influence on

itself, will be useful in a later section of the report dealing with the inverse problem,

that of defining loadings fro' a specified surface.

The A(L,N) term in equation (4) is a weighting factor which allows consideration

of partial elements in the summation process and permits a better definition of the wing

leading-edge shape. The factor A(L,N) takes on values from 0 to 1 given by

A(L,N) : 0

A(L,N) = L - Xle

A(L,N) = 1

B(L,N)The

takes on values from 0 to 1 given by

L < 0)- Xle =

(0<L-Xle<l)

- Xle =

term is a trailing-edge influencing-element weighting factor which also

B(L,N) : 0

B(L,N) = 1 - (L- Xte)

(9)

B(L,N) = 1

(L - Xte -> 1)

(0<,

(' <0)

(lo)

The C(L,N) term is a wing-tip influencing-element weighting factor which takes on

values of 0.5 or 1 given by
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/1.o (N
(II)

Desired values of lifting-pressure coefficient ACp(L,N) assigned to each space or

element of the grid are obtained from loading formulas evaluated at the centroid of the

element. The pressure may vary from element to element but is assumed to be constant

within a given element.

The control point (x,y) of an element is fixed at the midspan of the element trailing

edge by the mathematical modeling of the supersonic horseshoe vortex system. The

wing-surface slope at that point may be found by a summation of the contributions of

each of the elements within the influencing region and is expressed as

N=Nmax L=L*-[N*-N[

oz ) )= ACp(L*,N*)+ g(L*-L,N*-L)

N=Nmin L:l+[Xle ]

× A(L,N) B(L,N) C(L,N) ACp(L,N) (12)

The vertical lines as used in IN* - N[ designate the absolute value of the enclosed

quantity, and the brackets in [Xle3 designate the whole-number part of the quantity.

The initial summation with respect to L is made only when

L*- IN*- N[ >= 1 + [Xle ]

In the original method (ref. 5) values of the surface slope as given by equation (12)

were used directly. However, experience has shown that irregularities in the definition

of the camber surface in the immediate vicinity of the wing leading edge often arise. By

observation of design-program calculated slopes and comparisons with analytic solutions,

it was noted that errors which occur for the leading-edge elements (especially notable

when the weighting factor A is small) were followed by a smaller error in the opposite

direction for the next element. Errors were found to decrease rapidly for successive

downstream elements. A smoothing process based on this observation is depicted in

figure 6. Values of the surface slopes from equation (12) and their assumed distribution

are shown, respectively, as small solid circular symbols and as a dashed line in the

upper portion of the figure. As noted previously, the slope calculated for a given field-

point element (L*,N*) is applicable to the rear midpoint of that element. That slope is

assumed to extend over the rear half of the (L*,N*) element and over the front half of the

(L*+I,N*) element. As shown, a forward extrapolation of 8z/ax values from the second

and third element to the first produces a az/ax value in marked contrast to the original
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value. A simple averaging of these two values is found to yield a much more reasonable
value of the first element slope. With the process carried out for successive downstream
elements a smoothed slope distribution as shown in the lower portion of figure 6 is
obtained. In equation form the smoothing procedure is expressed as

c,sz 8z 0z c 8zc
(L*,N*) - 1 _ (L*,N*) + -_-(L* + 1,N*) - 1 -(L* + 2,N*) (13)

ax 2 2 ax

The z-ordinates of the wing surface at station

station y = N*/f_ may be found by a chordwise summation of the local slopes

L*=I +_Xte_

Zc,s(X,y) =

"Dz

c's (L*,N*) A(L*,N*)8x

,.,:1+
Wing-section ordinates as a function of the chord fraction

interpolation.

x = L* + 0.5 for a given semispan

x'/c

(14)

may be found by linear

Section lift, drag, and pitching-moment coefficients at any selected semispan

station y = N*/fi (see the appendix) may be evaluated by the following summations:

L*=l+[xte _
\

Cl = 1 > ACp(L*,N*) A(L*,N*) B(L*,N*) (15)

L*=l+[xte _

-I _ Ozc d = -_- -_-_(L *,N*) ACp(L*,N*) A(L*,N*) B(L*,N*) (16)

L*=l+_le]

\

= 1 > (L*) ACp(L*,N*), A(L*,N*) B(L*,N*) (17)Cm c2

L*=I +_le_

The A(L*,N*) term in equations (14) to (17) is a leading-edge field-point-element

weighting factor which takes on values from 0 to 1.5 given by

A(L*,N*) = 0

A(L*,N*) = L* - Xle + 0.5

A(L*,N*) = 1

0

L < 0)* _ Xle =

< L* - Xle < I)

(,. >,), _ Xle =

(18)
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The B(L*,N*) term in equations (15), (16), and (17) is a trailing-edge field-point-element

weighting factor which takes on values from 0 to 1.5 given by

B(L*,N*) = 0

B(L*,N*) = 0.5 - (L*- Xte 1

B(L*,N*) = 1

(L* - Xte >= 0)

(0> L* - Xte >-1)

L*-x t <-1)e =

(19)

The lifting-pressure coefficient for the field-point elements ACp(L*,N*) is obtained from

the loading formulas evaluated at the midspan of the trailing edge of the element so as to

correspond to the surface slope _Zc,s] ax defined at that point. Figure 7 illustrates the

element representation employed in camber-surface definition and in force and moment

determination.

Wing lift, drag, and pitching-moment coefficients, respectively, are obtained from

spanwise integrations of the section data as follows:

2 fb/2= -- c/c dy (20)CL _S _0

(21)2 fb/2- CdC dy
CD _S _0

2 fb/2= CmC2 dy (22)
Cm _ _0

The integrals are evaluated by means of standard numerical techniques applied to a

selected set of spanwise stations corresponding to integer values of N*.

The wing area used in the expressions for the aerodynamic coefficients may be

found through a summation

N*=Nma x L*= l+_te_

S: 2_ _ _ A(L*,N*)B(L*,N*)C(L*,N*) (23)

The leading-edge and trailing-edge grid-element fractions are determined as previously

described, and the center-line or wing-tip grid-element width is defined by
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C(T,*,N*): (N*:0)

C(L*,N*) = I (0 < N* < Nmax)

: (N*:Nm )

(24)

Optimum Combination of Loadings

In reference 10 Lagrange's method of undetermined multipliers has been applied to

the problem of selecting a combination of component loadings yielding a minimum drag for

arrow and delta wings producing a given lift. The method may be used for wings of any

planform, provided that the interference-drag coefficients are first determined. By using

the nomenclature of the present report, the drag coefficient of the interference between

any two loadings i,j may be expressed as

-2

CD,ij = CD,ji =

N*:Nma x L*=I+ [Xte]

2_?
N*:0 L*:1+ id

N*=Nma x L*-l+[xte ]

:s) )
N*:0 L*- l+[Xld

_(_---_I (L*,N*) A(L*,N*) B(L*,N*) C(L*,N*)ACP, i(L*'N*) j

, 8z
ACp,j(L*,N ) (_a---_)i (L*,N*) A(L*,N*) B(L*,N*) C(L*,N*) (25)

and may be evaluated by numerical means.

In reference 5 Lagrange's method of undetermined multipliers was applied to the

problem of selecting a combination of loadings on arbitrary planform wings to yield a

minimum drag subject only to a restraint on lift coefficient. In reference 11 the numeri-

cal methods were extended to permit additional constraints on pitching moment and the

z-ordinate at the wing-root trailing edge.

The total lift coefficient resulting from n wing-loading distributions is given by

i=n

C L = _ CL,iA i (26)
i=l

where CL, i denotes the lift coefficient of the ith loading and A i is the load strength
factor of the ith loading. The total pitching-moment coefficient resulting from n

wing-loading distributions is given by

i=n

C m = _ Cm, iAi
i=l

(27)
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where Cm, i
load strength factor for the ith loading. Similarly, the z-ordinate at the wing-root

trailing edge resulting from n wing-loading distributions is given by

i=n

z r = _ Zr,i Ai
i=l

denotes the pitching-moment coefficient of the ith loading and A i is the

(28)

where denotes the z-ordinate at the wing-root trailing edge on the camber sur-
Zr,i

face required to support the ith loading.

If, in addition to a given lift, the constraints of zero pitching moment (Cm = 0)

and given z r are imposed on the drag-minimization problem, the method of Lagrange

multipliers yields the following set of equations which establishes the relative strength

of each loading:

XLCL, 1 + _mCm, 1 + XzZr, 1 +

_LCL,2 + _mCm, 2 + _zZr, 2 +

i=n

_ CD, liAi = 0

i=l

i=n

CD,2iAi = 0

i=l

i--n

_LCL,n + _mCm,n + _zZr,n + _ CD, niA i = 0
i=l

i=n

_ CL,iAi = CL_ d

i=1

i=n

Cm,iAi = 0

i=l

i=n

_ Zr,iA i = z r

i=l

(29)

Machine-computing techniques allow the evaluation of the weighting factors Ai, and,

thus, the camber surface for an optimum combination of preselected loadings may be

determined as

i=n

Zc(X,y ) = _ Zc,i(x,y)A i (30)

i=l
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The corresponding drag coefficient is

i=n j--n

1
CD=2 _ _ CD, ijAiAj

i=1 j=1

(31)

The numerical method for the design of camber surfaces for wings with arbitrary

planforms as first presented in reference 5 was implemented for three specified wing-

loading distributions: uniform, linear chordwise, and linear spanwise. In the present

method, which incorporates improvements introduced in reference 11, five additional

wing-loading distributions are provided so that the drag-minimization procedure will

have more versatility in computing the optimum combination of loadings. This is partic-

ularly important because of the more stringent requirement of satisfying three con-

straints rather than just one. The eight specified wing-loading distributions presently

available are illustrated in figure 8.

Loading for a Given Camber Surface

In the numerical solution for the camber surface required to support a specified

loading it is found that the field-point element has no influence on itself (e.g.,

R(L*-L=0,N*-N=0) = 0). Thus, equation (12) can be rewritten as

Nmax L*-IN*-NI
\

4 +I )7

Nmin Lle

x B(L,N) C(L,N) ACp(L,N) (32)

and the lifting-pressure distribution ACp can be determined for a wing of arbitrary-

surface shape provided the calculations are performed in the proper sequence. The

order of calculating ACp(L*,N*) is from the apex rearward (i.e., increasing values of

L*); thus, all pressure coefficients within the fore Mach cone from any element will

have been previously obtained and no unknown pressure coefficients arise in the summa-

tion. Since thevalueof R for L*= L and N*= N is zero, ACp(L=L*,N=N*) is

not required for the summation. The influencing-element weighting factors A(L,N),

B(L,N), and C(L,N) are as defined as in the solution for a camber surface for a given

loading.

Theoretically, ACp(L*,N*) defined by equation (32) is the pressure coefficient at

the midspan of the trailing edge of the L*,N* element. In the numerical method pre-

sented in reference 6 provision was made for determination of an average value of ACp
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over the element. In spite of this averaging, however, there remained large oscillations
in pressure coefficient from element to element which were subduedby inclusion of a
powerful nine-point terminal smoothing formula. The terminal smoothing procedure took
place after an initial definition of unsmoothed pressures for the entire wing and neces-
sitated an extension of the wing grid system for four elements behind the actual wing
trailing edge. This effectively limited application of the method to wings with supersonic
trailing edges. An aft-element sensing technique which permits an integral smoothing
has now been incorporated in the numerical method to eliminate the need for both
averaging and the terminal smoothing steps.

The aft-element sensing technique involves the determination of preliminary ACp
results for a given field-point element and for the element immediately following, com-
bined with a subsequent fairing or smoothing of these preliminary results. The fairing is
applied to the velocity potential (i.e., the integral of the pressure) rather than to the
pressure itself because of the noticeably better behavior of the velocity potential in regard
to the absenceof discontinuities. The procedure outlined in the following steps may be
clarified by reference to figure 9 which shows application of the technique to a typical
element:

(a) Calculate and retain temporarily preliminary ACp values for a given
row with L* = Constant. Designate as ACp,a(L*,N*).

(b) Calculate and retain temporarily preliminary ACp values for the

following row with L* = Constant + 1 by using ACp, a values obtained in the

previous step for contributions from the row with L* = Constant. Designate as

_Cp, b(L*, N*).

(c) Calculate a final AC value from a fairing of integrated preliminary
P

ACp results.

For leading-edge elements, defined as L* - Xle(N*) < 1,

Ill + A(L*, N*).] ACp, a(L,,N, )ACp(L*, N*) = 1 + A(L*, N*)J

1 [ A(L*,N*) _ Z_Cp,b(L.,N. ) (33)+ 2 1 + A(L*,N*)J

For all other elements, defined as L* - Xle(N*) > 1,

3 1
_Cp(L*,N*) =_ ±Cp, a(L*,N*) +_-ACp,b(L*,N*) (34)

In the evaluation of ACp, b(L*,N*), the influence-function--pressure-coefficient

summation may be separated into two parts. One part consists of all the spanwise

16



rows for which L*- L _>2, and the second consists of only this L*- L = 1 row which

is calculated with preliminary ACp values. The first part may be retained temporarily

to avoid repetition in the subsequent calculation of ACp(L*,N*) for the following row.

For determination of the loading corresponding to a given camber surface, it is

required that ACp be evaluated for all elements. Hence, there is little advantage in

evaluation of forces and moments from section coefficients at selected span stations as

was done in the design method.

The lift coefficient may be obtained from the following summation over all elements:

N*=Nma x L*=Lte

C L = _-_ . ACp(L*) + 7

N*=0 L*=Lle

7

+ 1)J A(L*,N*) B(L*,N*) C(L*,N*)

(35)

The pitching-moment coefficient about x = 0 is

N*=Nma x L*=Lte

Cm _S_ (L*) ACp(L*) +-4 ACp(L* + 1 A(L*,N*) B(L*,N*)

N*=0 L*=LIe

x C(L*,N*) (36)

The drag coefficient may be expressed as follows:

N*=Nma x L*=Lte

= __ 1 ACp(L* +CD -2 ACp(L*) + _-_S -_ (L*)

N*=0 L*=Lle

az c1

I_ A(L*, N*) B(L*, N*) C(L*, N*) (37)+ _- --_-- (L*

This relationship does not consider any contribution of the theoretical "leading-edge-

suction" force or of any separated flow effects associated with its exclusion and accounts

only for the inclination of the normal force to the relative wind.

The element weighting factors in equations (32) to (37) are defined in the descrip-

tion of the wing-design method. Figure 10 illustrates the element representation

employed in wing-loading definition and in force and moment determination. The partic-

ular method of computing the total force and moment coefficients as described previously

and illustrated in figure 10 was adopted to provide a more rapid convergence of total

wing forces and to increase compatibility with the wing-design method.

17



The distribution of wing lift in the streamwise and spanwise direction may be
obtained from summations, taken row by row, of grid-element forces in the L- and
N-directions, respectively. These distributions are conveniently expressed as fractions
of total wing lift as follows:

For the streamwise lift distribution,

N*=Nmax

2 > ACp(L*,N*) A(L*,N*) B(L*,N _) C(L*,N $)

(Lift)L* _ N*=0 (38)

Total lift _CLS

and for the spanwise lift distribution, at a selected

panel only,

(Lift) N *

L *= L t e

>
L* =Lie

N* value on the right-hand wing

ACp(L*,N*) A(L*,N*) B(L*,N*) C(L*,N*)

Total lift _CLS
(39)

The method permits the evaluation of loadings for wings with an arbitrarily warped

camber surface at zero angle of attack as specified by the element surface slopes

--_--(Lazc *,N*) of equation (32). By repeating the solution for a flat wing of the same plan-

form at unit angle of attack, and by calculating interference-drag coefficients, wing

aerodynamic characteristics may be obtained over a range of angles of attack and lift

coefficients. Lift and moment coefficients, respectively, may be found by a direct

addition:

CL,T = CL, C + (CL, F)a=I a (40)

Cm, --¢m,¢+ (41)

The drag coefficient, however, requires consideration of the drag of the warped wing, the

drag variation with lift for the flat wing, and an interference drag defined by flat-wing

pressures acting on the cambered wing surface and by cambered wing pressures acting

on the flat-wing surface. By using the method shown in reference 7, the drag coefficient

may be evaluated as

CD, T = CD, C + (CD, F-C + CD,
+(co, c,_ c,,,

__"L] F--)__T] (42)

18



The interference-drag terms employed in equation (42) are defined as follows:

For flat-wing pressures acting on the cambered wing surface,

N*=Nmax L*= Lte

CD, F-C _S

N*=0 L*=Lle

×
I3 _(L*)

1 _Zc ,]
+

aX--c(L*- A(L*,
N*) B(L*, N*) C(L*, N*) (43)

and for cambered wing pressures acting on the flat-wing surface,

8z C

CD, C_F = -CL, c (aXF)_= 1
- CL, C(-0.01746) (44)

ILLUSTRATIVE EXAMPLES

Design Method

The effect of the design-program modifications on the definition of camber-surface

slopes and ordinates is illustrated in figures 11 and 12, respectively. Program results

for arrow wings with subsonic leading edges (_ cot A = 0.4, 0.6, and 0.8) designed to

support a uniform load are compared with exact linearized-theory results from refer-

ence 12. Slopes and ordinates are shown as a function of chordwise position for three

spanwise positions corresponding to adjacent element locations near the wing midsemi-

span. Adjacent rather than widely separated stations are shown to illustrate better the

highly localized irregularities which the newer method is designed to suppress. For

highly swept wings (small values of _ cot A) there are only minor improvements in

camber-surface definition through use of the present method. Appreciable improvements,

however, are noted for the largest value of _ cot A where the leading edge approaches

the Mach line. Apparently, the reason for this behavior is that for highly swept wings

the fore Mach cone region of integration is broad and can be adequately represented by

straightforward numerical integration over rectangular elements; whereas for wing

leading edges approaching the Mach line the region of integration is narrow and is poorly

represented by a limited number of rectangular elements. The smoothing routine helps

overcome the erratic behavior of the numerical integration techniques in this later case.

Application of the design method in the definition of camber surfaces designed to

support representative component loadings and an optimum combination of those loadings

is illustrated in figure 13. An arrow wing with a leading-edge sweep of 70 ° at M = 2.0

is used as an example. Note the large local surface ordinates called for near the root
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chord for all the loadings. Generally, these singularities occur whenever there is a
discontinuity in leading-edge sweep (the apex in this case). Camber-surface severity in
these regions can be minimized in a design problem by substitution of a smoothed leading
edge so that the transition from one leading-edge sweepto another takes place over sev-
eral leading-edge elements. A limitation may also be placed on the allowable ordinate at
a specified location by exercising an available program option. There is no guarantee,
however, that ordinates exceeding this limit will not then arise at some other location.

An illustration of the effect of the design-method number of component loadings on
the optimum combination of loadings, on the camber surface, and on the drag-due-to-lift
factor is given in figure 14 for an ogee wing at M = 2.0. The changes in optimized

loadings appear to be relatively large compared to the resultant change in drag-due-to-lift

factor (8.4 percent). Changes in the corresponding camber surface appear to be rather

subtle. In spite of the predicted theoretical improvement with increasing component

loadings, the use of more than three should be approached with caution. Much is yet to

be learned concerning the degree to which linearized-theory methods can be implicitly

followed. Certain restricted optimum-design approaches have, however, been shown to

yield appreciable benefits. (See refs. 13, 14, and 15.)

Analysis Method

The present wing-evaluation method, through employment of the aft-element sensing

technique, effectively eliminates the need for the powerful terminal smoothing operation

of the previous method. This is shown in a set of examples for arrow wings for subsonic,

sonic, and supersonic leading edges given in figure 15. Flat-wing lifting-pressure

coefficients are shown as a function of chordwise position for one semispan section.

Numerical-method results are compared with linearized theory (ref. 16). For the

previous method (ref. 6), numerical results are shown with and without the nine-point

smoothing operation.

The improvement afforded by the newer method may not be immediately apparent

for the more highly swept wing leading-edge examples (low values of _ cot A). The

present-method results display a considerable amount of scatter about the theoretical

curve, more than the previous-method results with application of the terminal smoothing

technique. It will be noted, however, that, in spite of some initial oscillations near the

leading edge, the present-method results approach rather closely the linearized-theory

results. These oscillations appear to be mild enough for an uninformed manual fairing

of the data to approximate closely the correct results. Such does not appear to be the

case for the unsmoothed data from the previous method. Thus, a terminal smoothing

procedure is essential to the success of the previous method but is not required for the

present method. This elimination of the need for a final smoothing (and a corresponding
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extension of the wing surface four elements behind the trailing edge) constitutes one of the
prime advantages of the new system because, as will be demonstrated later, it permits
consideration of subsonic trailing edges.

For wing subsonic leading-edge sweep angles in the range of much practical interest
(values of /3cot A from 0.6 to 1.0), the present method is superior in predicting pres-
sures. In general, unsmoothed pressures from the newer method give a better represen-
tation of exact linearized theory than do the smoothed pressures of the older system.
The improvement for the sonic leading-edge case (fi cot A = 1.0)is particularly impres-

sive. With the previous method divergent oscillations could not be completely suppressed,

and, thus, the exactly sonic leading-edge condition had to be avoided. Now, the sonic

leading-edge condition seems to be handled as well as any other.

For wing supersonic leading-edge sweep angles there are only minor differences

between the present and previous methods. Either appears to be adequate. In any case

there appear to be no disadvantages associated with the newer method which overcome its

obvious advantages at subsonic and near-sonic leading-edge conditions.

Another appraisal of the lifting-pressure-distribution representation of the present

and the previous method is afforded in figure 16. Note that data from the present method

is shown on the right-hand side of the figure and that data from the previous method is

shown on the. left. Spanwise pressure distributions are shown for stations at 25, 50, and

100 percent of the overall length of delta wings with values of /3 cot A from 0.4 to 1.6.

Wing program dimensions were chosen so that each wing contained approximately

2000 elements. Although there are instances where the present method gives a poor

correlation, they are isolated and do not overcome the generally better handling of

the problem with the present method. It might be pointed out that previous-method

results cover only the smoothed pressures which require a trailing-edge extension

and preclude consideration of subsonic trailing edges.

Correlation of numerical-method lift-curve slopes with linearized-theory values

from reference 16 is shown in figure 17. There is seen to be very little difference

between the two numerical methods, except for the particular case of /3 cot A = 1.0

where the newer method offers a distinct advantage. For other sweep angles, both

methods agree reasonably well with the analytic results.

Correlation of numerical-method results with linearized theory for a more complex

double-delta planform is given in figure 18. Theoretical results were obtained from

reference 17. It is seen that pressure oscillations are more subdued in the present

method, but that neither numerical method reproduces the pressure discontinuities. This

discrepancy may be immaterial, however, because such discontinuities have not been

observed in experimental investigations.
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Application of the present numerical method to prediction of pressure distributions
on a flat-plate wing with a subsonic trailing edgeis illustrated in figure 19. Numerical-
method results (new method only, previous method not applicable) are compared with

theory from reference 18. The Kutta condition, vanishing ACp at the trailing edge, is
seen to be met. However, again the pressure discontinuities are not properly repre-
sented. A better approximation may be obtained by increasing the number of elements
and decreasing their size, but the jump will continue to be represented by a more gradual
variation over a number of elements.

A final example of the application of the wing-evaluation method to flat-plate wings
treats an arbitrary planform of the ogee type (fig. 20). The numerical methods were
designed with application to just such arbitrary planforms as an objective; however,
because theoretical solutions are not available for arbitrary planforms, verification of
the methods was accomplished for the simpler planforms previously discussed. The data

of figure 20 show a somewhat smaller degree of ACp oscillation for the present method;
otherwise, the results are quite similar and appear to be in reasonable agreement.

Methods in Combination

In an airplane-design project it is often desirable to use the design method and the
evaluation method in combination. Because design-method results can yield camber
surfaces too severe for incorporation in practical airplanes, these surfaces are often
modified and use is then made of the evaluation method to assess the effect of the modifi-
cation. This procedure may be misleading, however, if there is not a sufficient degree
of correspondence between the two methods. Onetest of this correspondence is to submit
a design-method surface directly to the evaluation-method program and to compare
drag-due-to-lift factors. In one instance reported in reference 11a difference in drag-
due-to-lift factor of as much as 7 percent was found. Use of the design-method smoothing
procedure, the evaluation aft-element sensing technique, and appropriate treatment of
numerical integrations has been found to reduce this discrepancy considerably. This
improvement is illustrated in figure 21. The previously mentioned example from refer-
ence 11has been used to make the comparison. At the left of the figure, data from
reference 11using the previous design and analysis methods have been repeated.
Results for the same example when performed with the present methods are shown at the
right. The results show an appreciable improvement for one of the most severe discrep-
ancies encountered.

A more detailed comparison of design- and analysis-method results is shownin

figures 22 and 23. Again, a camber surface from the design program has been submitted
directly to the evaluation program. The first example is that of a clipped-tip delta wing
with three component loadings at a Mach number of 2. A more complex ogee planform
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and a seven-term loading is considered in the second example. The delta wing was
represented by 2104 program elements and the ogee by 2387.

From figure 22 a comparison can be made of the design-method pressure distribu-
tion for an optimum combination of loadings and the pressure distribution evaluated for
that surface by the analysis method. For both examples, evaluation-method pressures
nearly duplicate the design pressures except in the immediate vicinity of the leading edge.

From figure 23 a comparison can be made of the design-method spanwise loading
distribution and the loading distribution calculated by the analysis method. For the
simpler case of three loadings on a delta wing, the loading distribution appears to be
faithfully reproduced. For the seven-loading ogee example, discrepancies are more
obvious. Much of the difficulty lies in drag-distribution peak in the vicinity of the root
chord. Suchpeaks can occur wherever there are discontinuities in the wing leading-edge
sweep. Thus, care must be exercised to provide closely spaced design-method compu-
tation stations in these regions. The integrated forces show the lack of a complete
agreement between the design and analysis methods. Nevertheless, the discrepancies
are relatively small and well within the ability of linearized-theory methods to account
for real-world aerodynamic phenomena.

In order to illustrate convergence characteristics of the methods, the design-
methodmanalysis-method correlation for the previous delta-wing example was
repeated a number of times with various element arrays being used to represent the
wing. In figure 24, force data and aerodynamic center are shown as a function of the
number of elements. Inset sketches illustrate the planform representation for different
numbers of elements. The dotted line simply indicates a constant level (for reference
purposes) to which the results appear to be converging. Converged results consistent
with the validity of linearized theory seem to be attained with about 300 to 1000elements.

Although the correspondence of the design and analysis methods has been improved,
essentially identical results are not obtained within reasonable computational times.
Therefore, care must be taken in the conduct of trade or sensitivity studies in which the
effects of relatively small changes in wing-design parameters are to be evaluated.
Either method could be used in the prediction of trends (for example, the variation of
drag-due-to-lift factors with sweep angle); however, any intermixing of results should
be avoided.

An indication of the computational time requirements as well as of the convergence
characteristics for typical applications of the present design and analysis methods is
given in figure 25. The clipped-tip delta wing with _ cot A = 0.836 was used for the

examples. Drag-due-to-lift factor ACD/_CL 2 was taken as the quantity used to judge

convergence. In the design of the camber surface and in the evaluation of the flat wing,

these factors are applicable to the complete lift-drag polar. In the case of the evaluation
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of a specified camber surface, lift and drag were evaluated for the condition corre-
sponding to a specified design lift coefficient, and thus the factor is applicable for only
one point on the lift-drag polar. The maximum number of wing elements employed was
selected to give indications of a converged solution for all projects. Computational
times shown here do not include the time required to place the program in core storage,

a time which varies considerably from one system to another. These calculations were
performed on the Control Data Corporation (CDC) 6600 computer.

Results shown herein indicate that, in instances where estimates of overall force
characteristics are sufficient as in conceptual design projects, adequate results can be
obtained in remarkably short times. Such a capability should be of use in the selection
of candidate configurations from large numbers of possible combinations of geometric
design variables. Detailed camber-surface descriptions and pressure distributions, of
course, require a better planform representation and considerably greater computational
times.

In the computer programs which now implement the numerical methods, emphasis
was placed on the development of straight-forward logic closely associated with the phys-
ics and mathematics of the problem; little attention was given to advancedprograming

strategies.

CONCLUDINGREMARKS

In rather extensive employment of numerical methods for the design and analysis of
arbitrary-planform wings at supersonic speeds, certain deficiencies have been uncovered.
Recently, means of overcoming the major part of these deficiencies have been devised
and are now incorporated into the methods. In order to provide a self-contained descrip-
tion of the revised methods, the original development as well as the more recent revi-
sions have been subjected to a thorough review in this report.

Revisions to the wing-design method have virtually eliminated irregularities that
often arose in the definition of the camber surface in the immediate vicinity of the wing
leading edge. An aft-element sensing technique has been incorporated into the analysis
method to suppress pressure oscillations which formerly required application of a power-
ful nine-point smoothing formula. Elimination of the need for the smoothing formula and
for the associated four-element trailing-edge extension now permits the handling of sub-
sonic trailing edges. These improvements, in combination with more compatible sum-
mation methods in the design and analysis mode, have reduced small but disturbing
discrepancies which sometimes arose between wing loadings and forces determined for an
optimized wing and loadings and forces calculated for that same shape upon submittal to
the evaluation program.
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Examples have been presented to illustrate changes in program results brought
about by the modifications and to show correlation with exact linearized-theory methods
where applicable. Application of the methods to sample problems indicates that, in
instances where estimates of overall force characteristics are sufficient, as in conceptual
design projects, adequate results can be obtained in remarkably short times (Central
Processing Unit CDC 6600 computer times measured in seconds). Detailed camber-
surface descriptions and pressure distributions require considerably greater com )uta-
tional times.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Hampton, Va., August 12, 1974.
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APPENDIX

COMPUTER-PROGRAM DESCRIPTIONS

Wing-Design Method

The numerical method for the definition of camber surfaces for given loadings and

the method for the selection of an optimum combination of loadings have been combined

and programed for the CDC 6600 computer (Langley program A4411).

The wing-planform data may be submitted to the program in any convenient scale

and/or units. Reduction to program scale is accomplished by built-in logic. For a given

planform, the element arrangement is uniquely determined by selection of the number of

semispan grid elements NON and by the choice of design Mach number. The number of

both N's and L's is limited to 100. Thus, NON must be less than 100 or less than

50/_SPAN/XMAX, whichever is smaller.

The user has the option of supplying wing leading- and trailing-edge coordinates as

tabular entries for a full series of successive span stations corresponding to program-

element locations (y = (b/2)N/NON) or as tabular entries for a selected series of break

or definition points. In the latter case, linear interpolation methods are exercised to

provide the necessary fullset of leading- and trailing-edge x-ordinates in program

scale. The first option is appropriate for wings with continuous curvature as exemplified

by the ogee type. The second option simplifies the handling of more conventional plan-

forms composed of straight-line segments. A similar option is provided for the descrip-

tion of the specified area to which a linear chordwise loading is applied.

Surface slopes are not calculated for every wing element, but only at spanwise

stations corresponding to selected integer values of N (JBYS). The number of span-

wise stations selected may be as large as the number of N's, but at the expense of

increased computational time. A numerical trapezoidal-integration technique is used to

obtain wing lift,drag, and pitching-moment coefficients from the spanwise-section data.

This technique is simpler in application than the linked cubic formulation previously

employed and is more directly comparable to the integration techniques used in the wing-

evaluation program. When itis desirable to reduce computational time by employment

of a relatively small number of spanwise stations, care must be exercised in their

selection, especially for wings with complex leading-edge shapes. In the vicinity of

leading-edge breakpoints or regions of rapid curvature itis necessary to have more

closely spaced spanwise stations than for other locations because of the severe surface

shapes that are often called for.

26



APPENDIX - Continued

By employment of selector codes any combination of the eight loadings available

may be considered in the optimization process. The user also has the option of applying

the moment and/or the z-ordinate restraint. As a practical matter, it is believed that

the first three loadings should be included in any optimization problem with at least one

additional loading for each additional restraint.

The primary program results, the camber surface corresponding to an optimum

combination of loadings subject to certain restraints, may be expressed in any desired

scale and units by selection of the factor RATIO. Ordinates at the selected spanwise

stations JBYS are given in terms of distance behind the wing leading edge and in terms of

local chord fractions. Section aQrodynamic characteristics as well as wing aerodynamic

characteristics (lift, drag, and pitching moment) are given for the optimized wing design.

Additional printout data include the set of interference-drag coefficients for all the

loading-distribution--camber-surface pairings.

Wing-Analysis Method

The numerical method for the determination of pressure loading for a given camber

surface has been programed for the CDC 6600 computer (Langley program A4410).

Wing-planform data are submitted to the program in the same manner as described

for the wing-design method. Again, the user has the option of defining the planform by a

full set of leading- and trailing-edge ordinates or by a selected set of breakpoints.

The wing camber-surface definition is supplied as a set of ordinates at specified

locations in percent of local chord for a set of selected span stations. A factor (RATIO)

may be employed to convert nondimensionalized ordinates or ordinates in parametric

form to the scale used in the wing-planform definition.

The numerical representation of the wing as an array of rectangular elements is

controlled by selection of the number of desired semispan grid elements NON. This

number may be very small (less than 10) or very large (greater than 50) depending on the

purpose of the calculation as will be discussed later.

Additional input data for a reference area and a corresponding span allow the

resultant aerodynamic coefficients to be expressed in terms of the arbitrary reference

area as well as in program units.

Program results, the pressure coefficients for the camber surface and for a flat

wing of the same planform, are tabulated for each of the program elements and are also

given as a function of standard percent-chord stations for selected semispan stations if

desired. Lift, drag, and pitching-moment coefficients for the program area and for a

reference area are obtained for both the cambered and flat wing from program

summations.
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APPENDIX = Concluded

Interference-drag coefficients between the flat and cambered wing surfaces and

pressures are used in the definition of tabulated lift-drag polar data. Streamwise and

spanwise lift-distribution data are also provided.

28



REFERENCES

i. Baals, Donald D.; Robins, A. Warner; and Harris, Roy V., Jr.: Aerodynamic Design

Integration of Supersonic Aircraft. J. Aircraft, vol. 7, no. 5, Sept.-Oct. 1970,

pp. 385-394.

2. Carlson, Harry W.; and Harris, Roy V., Jr." A Unified System of Supersonic Aero-

dynamic Analysis. Analytic Methods in Aircraft Aerodynamics, NASA SP-228,

1970, pp. 639-658.

3. Bonner, E.: Expanding Role of Potential Theory in Supersonic Aircraft Design.

J. Aircraft, vol. 8, no. 5, May 1971, pp. 347-353.

4. Woodward, F.A." An Improved Method for the Aerodynamic Analysis of Wing-Body-

Tail Configurations in Subsonic and Supersonic Flow. Pt. I - Theory and

Application. NASA CR-2228, Pt. I, 1973.

5. Carlson, Harry W.; and Middleton, Wilbur D.: A Numerical Method for the Design of

Camber Surfaces of Supersonic Wings With Arbitrary Planforms. NASA TN D-2341,

1964.

6. Middleton, Wilbur D.; and Carlson, Harry W." A Numerical Method for Calculating

the Flat-Plate Pressure Distributions on Supersonic Wings of Arbitrary Planform.

NASA TN D-2570, 1965.

7. Middleton, Wilbur D.; and Carlson, Harry W." Numerical Method of Estimating and

Optimizing Supersonic Aerodynamic Characteristics of Arbitrary Planform Wings.

J. Aircraft, vol. 2, no. 4, July-Aug. 1965, pp. 261-265.

8. Lomax, Harvard; Heaslet, Max. A.; and Fuller, Franklyn B.: Integrals and Integral

Equations in Linearized Wing Theory. NACA Rep. 1054, 1951. (Supersedes

NACA TN 2252.)

9. Mangler, K.W." Improper Integrals in Theoretical Aerodynamics. Rep. No. Aero.

2424, British R.A.E., June 1951.

10. Grant, Frederick C.: The Proper Combination of Lift Loadings for Least Drag on a

Supersonic Wing. NACA Rep. 1275, 1956. (Supersedes NACA TN 3533.)

11. Sorrells, Russell B.; and Miller, David S.: Numerical Method for Design of

Minimum-Drag Supersonic Wing Camber With Constraints on Pitching Moment and

Surface Deformation. NASA TN D-7097, 1972.

12. Tucker, Warren A.: A Method for the Design of Sweptback Wings Warped To Produce

Specified Flight Characteristics at Supersonic Speeds. NACA Rep. 1226, 1955.

(Supersedes NACA RM L51F08.)

29



13. Carlson, Harry W.: Aerodynamic Characteristics at Mach Number 2.05 of a Series

of Highly Swept Arrow Wings Employing Various Degrees of Twist and Camber.

NASA TM X-332, 1960.

14. Robins, A. Warner; Morris, Odell A:; and Harris, Roy V., Jr.: Recent Research

Results in the Aerodynamics of Supersonic Vehicles. J. Aircraft, vol. 3, no. 6,

Nov.-Dec. 1966, pp. 573-577.

15. McLean, Francis E.; and Carlson, Harry W.: Application of Wing Warp and Aero-

dynamic Interference To Improve Supersonic Performance. Proceedings of NASA

Conference on Supersonic-Transport Feasibility Studies and Supporting Research -

September 17-19, 1963, NASA TM X-905, 1963, pp. 165-176.

16. Puckett, A. E.; and Stewart, H.J.: Aerodynamic Performance of Delta Wings at

Supersonic Speeds. J. Aeronaut. Sci., vol. 14, no. 10, Oct. 1947, pp. 567-578.

17. Cohen, Doris; and Friedman, Morris D.: Theoretical Investigation of the Supersonic

Lift and Drag of Thin, Sweptback Wings With Increased Sweep Near the Root.

NACA TN 2959, 1953.

18. Cohen, Doris: Formulas for the Supersonic Loading, Lift and Drag of Flat Swept-Back

Wings With Leading Edges Behind the Mach Lines. NACA Rep. 1050, 1951.

3O



BY,P_7

4

5

2

0

-l

-2

-5

-4

M ==_=_>

0

Z

#Y l x

x,_

Figure 1.- Cartesian coordinate system.

31



¢z

A
irf

lo
w

Fi
gu

re
2.

-
G

ra
ph

ic
al

re
pr

es
en

ta
tio

n
of

th
e

in
fl

ue
nc

e
fa

ct
or

R
o



U
pw

os
h

A
irf

lo
w

Li
fti

ng
el

em
en

t

Fi
gu

re
3.

-
G

ra
ph

ic
al

re
pr

es
en

ta
tio

n
of

th
e

up
w

as
h

pr
od

uc
ed

by
a

lif
tin

g
el

em
en

t.



4

3

2

0

-I

-2

-5

-4

L_1 L

] 2 5 4 5 6 "7 8 9 10

I I I I I I I I I

0 1 2 3 4 5 6 7 8 9

x,,C

Figure 4.- Grid system used in numerical solution.

4

5

2

-4

I
10

N*,N

34



0_

-t -2

J
J

Fi
gu

re
5.

-
N

um
er

ic
al

re
pr

es
en

ta
tio

n
of

th
e

in
fl

ue
nc

e
fa

ct
or

R
(t

he
R

fu
nc

tio
n)

.

¢.
_



_--Wing leading edge

i IS Origina calculated va ues

I-_--] _ Assumed distribution '

I I I L......
L___J L-.._

L- ..O I

N_

_Zc,s (L.)
ax

c)z
ax

_F-_-_--Extrapolation from L*+I and L* +2

\

_ Averaged value for L*

i L__.
L__J..___ Original value for L*

il i} / Smoothed distribution, _zc's (L*)

.... c)x

az --_/ i

ax --l__t__

I 1 I I I I I

L 4_

Figure 6.- Illustration of the application of the surface-slope smoothing technique

in the wing-design method.

36



A
C

p

_Z _x

S
ur

fa
ce

de
fin

iti
on

F
or

ce
de

te
rm

in
at

io
n

/-
-

S
pe

ci
fie

d
lo

ad
in

g
//

_
_

//_
A

ss
um

ed
di

st
rib

ut
io

n,
_C

p(
L)

[
)_

-io
_-

F
ie

ld
-p

oi
nt

va
lu

e,
A

C
p(

L*
)

0

aZ
c,

s
.

.

I
/

/-
-

C
al

cu
la

te
d

va
lu

es
,-

--
_-

-(
L

)

O
/

_

'
A

ss
um

ed
di

st
rib

ut
io

n

I
I

._
_

j--
-C

al
cu

la
te

d
va

lu
es

Z
c,

s
(L

*)

!
_

\_
--

--
.

A
ss

um
ed

di
st

rib
ut

io
n

I
I

I
]

I

A
C

p

63
Z

O
x

/-
-

S
pe

ci
fie

d
lo

ad
in

g

_'
_

_
A

ss
um

ed
di

st
rib

ut
io

n,
A

C
p(

L*
)

,

63
Z

c,
s

.

.//
F

i
C

al
cu

la
te

d
vo

lu
es

,-
--

_-
--

(L
)

.
•

A
ss

um
ed

di
st

rib
ut

io
n

1
I

I
I

I
I

k_

L,
L*

Fi
gu

re
7.

-
Il

lu
st

ra
tio

n
of

el
em

en
t

pr
es

su
re

co
ef

fi
ci

en
t

an
d

su
rf

ac
e

sl
op

e
re

pr
es

en
ta

tio
n

fo
r

th
e

w
in

g-
de

si
gn

m
et

ho
d.



¢.
o

co

U
ni

fo
rm

Li
ne

ar
ch

or
dw

is
e

Li
ne

ar
sp

an
w

is
e

Q
ua

dr
at

ic
sp

an
w

is
e 2

A
C

p
co

ns
ta

nt
A

C
p

oc
x'

A
C

p
oc

Iy
I

A
C

p
_

y

A
C

p

Q
ua

dr
at

ic
ch

or
dw

is
e

P
ar

ab
ol

ic
ch

or
dw

is
e

C
ub

ic
ch

or
dw

is
e

S
pe

ci
fie

d
ar

ea

A
C

p
oc

(x
')

2
A

C
p

oc
x'

(x
'-c

)
A

C
p

oc
(x

')2
(t

.S
c-

x
')

A
C

p
_

xo

Fi
gu

re
8.

-
Il

lu
st

ra
tio

n
of

co
m

po
ne

nt
lo

ad
in

gs
fo

r
th

e
de

si
gn

of
w

in
g

ca
m

be
r

su
rf

ac
es

.



e0
0e

_/
_

in
al

&
C

p
fo

r

al
l

el
em

en
ts

A
ft-

el
em

en
t

se
ns

in
g

l
1-

F
in

al
A

C
p

fo
r

(L
*-

I,
N

*)
...

...
.

o-
P

r,
el

im
in

ar
y

&
C

p
fo

r
(L

*,
N

*)

L*

A
C

p
[

i

&
C

p

_
]
_

F
-

_
-

P
r
e
l
i
m
i
n
a
r
y

_
C
p

-
_
-
_
-
-
-
_

P
r
e
l
i
m
i
n
a
r
y

_
C
p

-_
sW

in
g

le
ad

in
g

ed
ge

um
m

at
io

n
w

ith

--
-I

--
--

_
pr

el
im

in
ar

y
A

C
p

fo
r

I
I_

=
L*

el
em

en
ts

_

F
--

_-
P

re
lim

in
ar

y
&

C
p

I
I

I
I

I
I

fo
r

(L
"

+
1,

N
*)

fo
r

(L
*

+
1,

N
*)

,
Z

_C
p,

b
(L

*,
N

*)

fo
r

(L
*,

N
*)

,
&

C
p,

o
(L

*,
N

*)

//

._
-_

'_
--

F
ai

rin
g

of
pr

el
im

in
ar

y
re

su
lts

i
///

f_
-

i
_-

_
-

In
te

gr
at

io
n

of
pr

el
im

in
ar

y
A

C
p

A
C

p
I

_-
-F

in
al

&
C

p(
L*

)

L
*

Fi
gu

re
9.

-
Il

lu
st

ra
tio

n
of

th
e

ap
pl

ic
at

io
n

of
th

e
af

t-
el

em
en

t
se

ns
in

g
te

ch
ni

qu
e

in
th

e

w
in

g-
ev

al
ua

tio
n

m
et

ho
d.



0

Lo
ad

in
g

de
fin

iti
on

_Z _x A
C

p

-
S

pe
ci

fie
d

su
rf

ac
e

__
t

-
A

ss
um

ed
su

rf
?c

e

C
al

cu
la

te
d

va
lu

es
,

,
,

,
...

...L
._

K
3-

J c_
z

_"
c

rL
.

_
c)

X
_

J

c3
Z

O
x

F
or

ce
de

te
rm

in
at

io
n

O
_Z

c

_-
--

-C
al

cu
la

te
d

va
lu

es
,

_x
L*

)

_-
-_

_.
-

A
ss

um
ed

di
st

rib
ut

io
n

__
__

4_
C

al
cu

la
te

d
va

lu
es

,
A

C
p(

L*
)

I
I

]
/-

--
A

ss
um

ed
di

st
rib

ut
io

n,

i
...

.
C

al
cu

la
te

d
va

lu
es

,
Z

_C
p(

L"
)

_'
_-

._
-

A
ss

um
ed

di
st

rib
ut

io
n,

L,
L*

L*

£i
#t

re
10

.-
Itt

us
tr

at
io

n
of

et
em

en
t

su
rf

ac
e

sl
op

e
an

d
pr

es
su

re
-c

oe
ffi

ci
en

t
re

pr
es

en
ta

tio
n

fo
r

th
e

w
in

g-
ev

al
ua

tio
n

m
et

ho
d.



E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

c
_z

"
b_

_
'_

P
C

L,
d

!
ct

x
0

.5
17

.5
17

c
az

"
#C

E
,dz

JT
.4

83
.4

83

-]
L

C
O

z
"1

•

_L
,d

z
_x

0
.4

48
.4

48

_.
,l

I
t

I
i

I
!

i
1

I
I

I

0
.

2
.4

.6
.8

1.
0

0
.2

.4
.6

.8
1.

0

x'
/_

x'
/c

(a
)

#
co

t
A

=
0.

4.

Fi
gu

re
II

.-
Pr

es
en

t
an

d
pr

ev
io

us
de

si
gn

-m
et

ho
d

re
su

lts
fo

r
th

e
de

fi
ni

tio
n

of

ca
m

be
r-

su
rf

ac
e

sl
op

es
re

qu
ir

ed
to

su
pp

or
t

a
un

if
or

m
lo

ad
.



c
a
z

/_
C

L,
d.

7
c_

x

P
re

vi
ou

s
m

et
ho

d

:L
Y b/
2

.5
14

E
xo

ct
lin

ee
riz

ed
th

eo
ry

N
um

er
ic

ol
m

et
ho

ds

P
re

se
nt

m
et

ho
d

-b
/2

.5
14

.2 I o.
_.

it-

.
4
8
3

_"
_

__
__

,_
_

.4
83

!
•

0 1
I

I
I

l
I

l

0
.2

.4
.6

.8
i.O

x'
/c

.4
57

I
I

I
I

I
I

0
.
2

,
4

.
6

.
8

1
.
0

x
'
/
c

•4
57

(b
)

_
co

t
A

=
0.

6.

Fi
gu

re
11

.-
C

on
tin

ue
d.



P
re

vi
ou

s
m

et
ho

d

"
b_

c
az

"

/_
C

L,
d.

Z
#x

.5
12

1

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

P
re

se
nt

m
et

ho
d

b/
2

.5
12

c
az

/_
C

L,
dZ

o_
x
.2L,t 0

.4
87

.2 .i 0

--
.I

I 0

_L

I
I

I
I

I

•2
.4

.6
.8

1.
0

X
'/C

.4
63

(c
)

_c
ot

A
=

0.
8.

S
_A

1
"1

1
I

I
I

0
.2

.4
.6

.8
t.O

X
_'

C

Fi
gu

re
11

.-
C

on
cl

ud
ed

.

.4
87

.4
63



.O
4 0

Z

/_
C

L,
d

Z
-.

04

-.
08

/

P
re

vi
ou

s
m

et
ho

d
Y

b/
2

.5
t7

E
xo

ct
lin

eo
riz

ed
th

eo
ry

N
um

er
ic

ol
m

et
ho

ds

P
re

se
nt

m
et

ho
d

o
m

Y
b/

2

,5
17

Z

,S
C

L,
d

l
-.

04

--
.0

8

.4
85

l
.4

83

.O
4 0

Z

,B
C

L,
d

Z
_.

O
4

-
.0

8
I

I
I

I
1

I

0
.2

.4
.6

.8
1.

0
X

l/C

.4
48

I 0

_,
_j

u,
__

_<
,

.4
48

I
I

.2
_

.4
X

'/C

I
I

I

.6
.
8

1.
0

(a
)

#
co

t
A

=
0.

4.

Fi
gu

re
12

.-
Pr

es
en

t
an

d
pr

ev
io

us
de

si
gn

-m
et

ho
d

re
su

lts
fo

r
th

e
de

fi
ni

tio
n

of

ca
m

be
r-

su
rf

ac
e

or
di

na
te

s
re

qu
ir

ed
to

su
pp

or
t

a
un

if
or

m
lo

ad
.



P
re

vi
ou

s
m

et
ho

d

.0
2

Y

0
Z

,8
C

L,
d

Z
-.

02

-,
04

.5
14

0
.4

83
Z

/_
C

L,
dI

-.
02 -.
04

. 0

-
.0

2

-.
04

I
I

I
I

I
I

0
.2

.4
.6

.8
1.

0

x'
/c

.4
57

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

ol
m

et
ho

ds

P
re

se
nt

m
et

ho
d

I
I

I
I

I
I

0
.2

.4
.6

.8
t,O

X
l/C

(b
)

/3
co

t
A

=
0.

6.

Fi
gu

re
12

.-
C

on
tin

ue
d.

Y
b/

2

.5
14

.4
83

,4
5;

7

¢.
yl



J
E

xa
ct

lin
eo

riz
ed

th
eo

ry

N
um

er
ic

al
m

et
ho

ds

P
re

vi
ou

s
m

et
ho

d

o,
__

__
-o

"m

•
I½

z
0

#C
L,d

Z
_

ot

-.
02

Y
b/

2

.5
t2

P
re

se
nt

m
et

ho
d

,0
1 0

-.
01

-.
02

_.
-o

3
"'"

•4
87

,0
t 0

Z

/g
C

L,
d

Z
-.

0
i

-.
02

I 0

-.
02

I'
t

I
i

I

.2
.4

,6
.8

1,
0

X
'/C

.4
63

(c
)

#
co

t
A

=
0.

8.

I
t

[
I

I
I

0
.2

.4
.6

.8
t

.0

X
_/

C

Fi
gu

re
12

.-
C

on
cl

ud
ed

.

Y
b/

2

.5
i2

.4
87

.4
65



Z
C
,
S

C
L,

d
[

Z
C

)S

C
L,

dZ

Z
c,

$

.C
L,

d

U
ni

fo
rm

_
0

-'2
T

._
•

.2 0

_.
4

,2 0

0
I

I
I

Li
ne

or
sp

an
w

is
e

t-
Li

ne
ar

ch
or

dw
is

e
O

pt
im

um

f
)

I
I

I
I

I
I

I
I

1
I

.2
5

.5
0

.7
5

0
.2

5
.5

0
.7

5
0

.2
5

.5
0

.7
5

0
.2

5
.5

0
.7

5

Y
Y

Y
Y

b/
2

b/
2

b/
2

b/
2

x/
z .2

5

.5
0

.7
5

Fi
gu

re
13

.-
N

um
er

ic
al

-m
et

ho
d

so
lu

tio
ns

fo
r

ca
m

be
r

su
rf

ac
es

to
su

pp
or

t
va

ri
ou

s
lo

ad
in

gs

on
an

ar
ro

w
w

in
g

w
ith

A
=

70
°.

M
=

2.
0.



co

3 2

A
C

p
1

C
L

,d
z

0

-1

m
_

3
Lo

od
in

gs
,

2
A

C
D

=
.5

80
C

L,
d

xl
t

.2
,4

.6
.8

t.0

J

xl
Z

--
.2

0

--
.4

0

...
.

,6
0

...
...

.
.8

0
...

..
1.

00

5
Lo

ad
in

gs
,

2
A

C
D

:.5
65

C
L,

d

.2
.4

.6
x/

t

7
L
o
a
d

ng
s,

2

//_
A

C
D

=
.3

48
C

L,
d

//]
.6

x/
z

C
L,

d
Z

.2 0 .2

--
.4

--
.6

x/
Z

•2
.4

.6
"

.8
t.O

/h

I
I

I

x/
_

.
2

.4
.6

8A
O

f

x/
Z

.2
.4

.6
,8

t.
O

I
I

I
I

0
.5

t.O
0

.5
t,0

0
.5

Y
Y

Y
b/

2
b/

2
b/

2

1.
0

Fi
gu

re
14

.-
N

um
er

ic
al

-m
et

ho
d

so
lu

tio
ns

fo
r

ca
m

be
r

su
rf

ac
es

to
su

pp
or

t
op

tim
um

co
m

bi
na

tio
ns

of
lo

ad
in

gs
fo

r
an

og
ee

w
in

g.
M

=
2.

0.



b
.3

45

o,
+

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

_D

,8
hC

p
(2

24 16 O
8 0

-.
08

0

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g
(9

pt
fo

rm
ul

a)

+
•

°O

f
•

In
te

gr
al

sm
oo

th
in

g

I
I

I
I

i
I

i
I

I
I

I

.2
.4

.6
.8

I
,0

0
.2

.4
,6

.8
,1

..0

x'
/c

xY
c

(a
)

co
t

A
=

0.
4.

Fi
gu

re
15

.-
Pr

es
su

re
-s

m
oo

th
in

g
ch

ar
ac

te
ri

st
ic

s
of

pr
es

en
t

an
d

pr
ev

io
us

ev
al

ua
tio

n

m
et

ho
ds

.
Fl

at
-a

rr
ow

w
in

gs
.



0

j_
__

J_
--J

-
_

J
J

o
_,

-'l
-

E
xa

ct
lin

ea
riz

ed

N
um

er
ic

al
m

et
ho

ds

th
eo

ry

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

pA
C

p
C

[

,2
4

,.t
6 .0
8 0

-.
08

- t 0

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g
(9

pt
fo

rm
ul

a)
f

•
In

te
gr

al
sm

oo
th

in
g

I
I

I

.2
.4

.6

X
'/C

I
l

.8
1.

0

I
I

i
I

I
I

0
.2

.4
.6

.8
1.

0

x'
/c

(b
)

#
co

t
A

=
0.

6.

Fi
gu

re
15

.-
C

on
tin

ue
d.



//
-

•5
4
1
b

.
,
+

E
xa

ct
I

in
ea

riz
ed

N
um

er
ic

al
m

et
ho

ds

th
eo

ry

I-
-L

/3
A

C
p

.2
4j

.O
8 0

-.
08

0

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g

(9
pt

fo
rm

ul
a-

)

+
+

•

I
I

I
I

.2
.4

.6
.8

x'
/c

•
In

te
gr

al
sm

oo
th

in
g

I
I

t.0
0

(c
)

#c
ot

A
=

0.
8.

1
I

I
J

I

.2
.4

.6
.8

l
.0

X
'
/
C

F
i
g
u
r
e

1
5
.
-

C
o
n
t
i
n
u
e
d
.



/_
A

C
p

.2
4

.1
6

.0
8 0

-.
08

-.
t6

T
•

+

J
J

,5
25

b

P
re

vi
ou

s
m

et
ho

d

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g
•

+
(9

pt
fo

rm
ul

a)
•

•
•

,
4-

+
-4

-
+

4-
4-

ff
_

_L

+

I
I

t
I

I
J

0
.2

.4
.6

,8
1.

0

X
'/C

E
xa

ct
I

ne
ar

iz
ed

th
eo

ry

•
,+

N
um

er
ic

al
m

et
ho

ds

P
re

se
nt

m
et

ho
d

•
In

te
gr

al
sm

oo
th

in
g

t I 0

(d
)

#c
ot

A
=

1.
0.

i
l

.2
.4

X
'/C

I
1

I

.6
.8

t.O

Fi
gu

re
15

.-
C

on
tin

ue
d.



3
3
3

o
,
+

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

.2
4

.1
6

B
A

C
p

.O
8 0

P
re

vi
ou

s
m

et
ho

d

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g
(9

pt
fo

rm
ul

a)

P
re

se
nt

m
et

ho
d

•
In

te
gr

al
sm

oo
th

in
g

A

I
1

I
I

!
I

I
I

0
.2

.4
°6

.8
1.

0
0

.2
.4

(e
)

_c
ot

A
=

1.
2.

Fi
gu

re
15

.-
C

on
tin

ue
d.

x'
/c

I
I

.
6

.
8

X
t/C

I

t.O



•3
3
3

b

,
,
+

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

/3
A

C
p

C
l

,2
4

,.1
6

.0
8

0

-.
08

- q 0

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g

(9
pt

fo
rm

ul
a)

I
I

I
t

I

.2
.4

.6
.8

t.0

x'
/c

F
•

In
te

gr
al

sm
oo

th
in

g

@
I

;
@

(f
)

/3
co

t
A

=
1.

4.

x'
/c

Fi
gu

re
15

.-
C

on
tin

ue
d.

I
I

I
I

I

0
.2

.4
.6

.8
1.

0



+
,+

E
xa

ct
lin

ea
riz

ed
th

eo
ry

N
um

er
ic

al
m

et
ho

ds

¢j
rl

/_
A

C
p

C
_

.2
4

_t
6

.0
8

+

-.
08

P
re

vi
ou

s
m

et
ho

d
P

re
se

nt
m

et
ho

d

•
W

ith
ou

t
sm

oo
th

in
g

+
T

er
m

in
al

sm
oo

th
in

g
(9

pt
fo

rm
ul

a)

•
In

te
gr

al
sm

oo
th

in
g

|
I

I
I

I
I

I
I

0
.2

.4
.6

.8
t

.0
0

.2
i

i
i

i
.4

.6
.8

I
0

x'
/C

x'
/c

(g
)

_c
ot

A
=

1.
6.

Fi
gu

re
15

.-
C

on
cl

ud
ed

.



Previous

7/I \_-.
zzj,___i. x,,

1.00

method Present method

/_ACp
(_

/_ACp
cz

.t6 r-

-- .08

_ACp

.t6 -

.16 -

.08 -

.08 -

\
0

B

]___

- i .0 -.5

x/t =:25

x/Z = .50

0 .5

Y
b/2

Exact linearized theory

Numerical methods

,0

x/t = t.O

(a) # cot A = 0.4.

Figure 16.- Present and previous evaluation-method results for pressure distributions on

flat delta wings. Present method shown for right-hand wing panel; previous method,

for left-hand panel.
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Figure 18.- Present and previous evaluation-method results for pressure distributions on

fiat double-delta wings. Present method shown for right-hand wing panel; previous

method, for left-hand panel.
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(a) Delta wing; three loadings; M = 2.0.

Figure 22.- Correlation of design-method specified pressure distribution with evaluation-

method results for the same wing surface.
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Figure 22.- Concluded.

70



Design

ACp z

Evoluotion

ACp

/ \

"X

\\

M =2.0
3 Ioadings
no restroints

.O8

cz _ .04

0

.O12 CL _C D _CD/CL 2

.008

O04

0
|

0

---- Design • 1000

• Evoluotion . tO00

I I I I

.2 .4 .6 .8 1.0

Y
b/2

•00393 .593

•00384 .384

(a) Delta wing; three loadings; M = 2.0.

Figure 23.- Correlation of design-method spanwise loading distributions with evaluation-

method results for the same surface.

71



Design

ACp z

Evoluotion

\\ M =2.0

7 Ioodings
No restraints

.08

CZ + .04

0

Cd c
z

.01 2

• OO8

.O04

0
I

0

CL

Design .tO00

• Evaluotion .0976

.2 .4 .6 .8 1.0

Y
b/2

(b) Ogee wing; seven loadings; M = 2.0.

Figure 23.- Concluded.

CD

.00578

.00552

CD/CL z

.B78

.570

72



Design Evaluation

__ M = 2.0
3 Ioadings
No restraint

Design

Evaluation

.>

.ii

CL .I 0

.O9

AC D
.004 _ ...... _ ............

L.003

.5O

AC---_°.40
CL 2

.30

f ....... _2 .... $ • ...........

Xoc ,o[-- .65
............................"......... -......=_..-_.. ............

.60

t 0 t O0 t 000 10000

Number of elements

Figure 24.- Correlation of design- and evaluation-method aerodynamic coefficients for

the same wing surface. Modified delta wing; M = 2.0; three loadings.

73



D
es

ig
n

cu
m

be
r

su
rf

ac
e

E
va

lu
at

e
fla

t
w

in
g

E
va

lu
at

e
ca

m
be

re
d

w
in

g

.5 ,2 .1 0
I

I
I

I
,
I

I
]

I
I

2

10
00 1O

0
T

im
e,

se
co

nd
s

lO

I
I

Y
/

I
t

1O
0

10
00

Y
/

I
I

10
0

10
00

i
I

I
I

I
I

I

10
tO

00
0

10
iO

00
0

i0
iO

0
iO

00
lO

00
0

N
um

be
r

of
el

em
en

ts
N

um
be

r
of

el
em

en
ts

N
um

be
r

of
el

em
en

ts

Fi
gu

re
25

.-
C

on
ve

rg
en

ce
ch

ar
ac

te
ri

st
ic

s
an

d
co

m
pu

ta
tio

na
l

tim
e

re
qu

ir
em

en
ts

(C
en

tr
al

Pr
oc

es
si

ng
U

ni
t

C
D

C
66

00

co
m

pu
te

r)
fo

r
ty

pi
ca

l
ap

pl
ic

at
io

ns
of

th
e

pr
es

en
t

de
si

gn
an

d
an

al
ys

is
m

et
ho

ds
.

I O
1

b_




